1

Mark schemes

\sim	4	
()	7	
w		

- (a) Nucleus;
- (b) 1. Loops (of DNA) contain introns;

 Accept 'non-coding' for introns, but only for mark point 1.
 - 2. DNA forming hybrid (molecule) contain exons;
 - 3. Complementary base pairing occurs between DNA and mRNA

OR

Hydrogen bonding occurs between DNA and mRNA;

4. Introns removed during splicing

OR

Introns removed to produce mRNA;

5. (The) mRNA is shorter (than original DNA/premRNA strand) due to splicing;

3 max

- (c) 1. No loops (of DNA);
 - 2. (Because) no introns (in prokaryotic DNA);

2

(d) Change in base sequence (of exons) occurs

OR

Deletion/addition of bases occurs

OR

Deletion of exons;

Accept description of exons.

Accept nucleotide/s for base/s.

Ignore references to DNA or RNA.

[7]

Q2.

- (a) 1. (Hb) loads/associates/binds oxygen in the lungs;
 - 2. At high partial pressure of oxygen;
 - 3. Binding of an oxygen (molecule to Hb) makes binding of another oxygen (molecule) easier;
 - 4. (Oxygen transported as) oxyhaemoglobin in red blood cells;
 - 5. (Hb) unloads/dissociates oxygen in the (respiring) cells/tissues;
 - 6. At low partial pressure of oxygen

OR

At high partial pressure of carbon dioxide;

Accept pO₂ for partial pressure of oxygen. Accept pCO₂ for partial pressure of carbon dioxide.

5 max

(b) 1. (mRNA attaches) to ribosomes

OR

(mRNA attaches) to rough endoplasmic reticulum; Full name required for RER.

- 2. (tRNA) anticodons (bind to) complementary (mRNA) codons;
- tRNA brings a specific amino acid;
 Accept amino acid joined to tRNA using ATP.
- 4. Amino acids join by peptide bonds;
- 5. (Amino acids join together) with the use of ATP;
- 6. tRNA released (after amino acid joined to polypeptide);
- 7. The ribosome moves along the mRNA to form the polypeptide;

5 max

[10]

Q3.

(a)

mRNA	tRNA	
1. (Has) codon(s)	(Has) anticodon;	
2. No hydrogen/H bonds/base pairs	Has hydrogen/H bonds/base pairs;	
3. No amino acid binding site	Has amino acid binding site;	
4. Linear/straight/not folded	'Clover (leaf' shape)/ folded;	
5. Long/many nucleotides/bases	Short/few nucleotides/ bases;	

Must be comparisons

Accept description of binding site, eg amino acid only bound to tRNA

Accept mRNA cannot carry an amino acid, tRNA can

3 max

(b) Phe, Arg, Ala;

Reject if order is different

1

- (c) (Name of mutation)
 - 1. (Single base) substitution;

(Change in DNA)

2. Guanine to thymine

OR

G to T

OR

GCC to TCC;

Marks can be achieved in any section Reject thiamine

(Explanation)

3. (So) Arg (still) present

OR

No change in amino acid;

Reject amino acids are formed

4. (So) no change in primary structure

OR

(So) no change in tertiary structure

OR

(So) no change in active site (shape);

4

[8]

3

2

1

2

Q4.

(a) (Volume)

Correct answer of 57.9 (μ m³) = **2 marks**;;

OR

If volume incorrect, evidence of 2.35-2.45 (as radius) = 1 mark

(Times larger)

8 (times larger) (or ECF) = 1 mark;

58 = **2** marks

57.91 = 2 marks

Accept 54.3/54 = 2 marks

Accept 61.6/62 = 2 marks

Allow 7.5 - 8.52

ECF Allow any alternative for 8 which shows 463 ÷

their volume

(b) 1. Nuclear membrane /nucleolus /vesicles/ lysosomes/ribosomes distinct/visible;

Accept invaginations of membrane distinct/visible

Reject nucleus

Reject mitochondrion

2. EM has greater resolution;

assume 'it' refers to electron microscope

(c) Stimulating cytotoxic T cells

OR

Stimulating B cells

OR

Stimulating phagocytes;

Accept 'activate' for stimulating

(d) 1. Anticodon (on tRNA) binds to (complementary) codon (on mRNA);

2. (tRNA) brings/carries specific amino acid (to ribosome);

[8]

Q5.

(a) Site of translation, catalyse the joining of amino acids by condensation reactions;

1

(b) Any **two** from:

rRNA;

(Pre) mRNA;

tRNA;

Ignore capitalization of r, m and t

1 max

(c) 1. Less phospholipids in rough

OR

More protein/glycoprotein in rough

OR

Presence of ribosomes in rough;

Accept references to percentages from Table 1.

- 2. (More protein/glycoprotein/ribosomes) Rough – production/transport of proteins; Accept modifies/packages proteins
- (More phospholipid) Smooth production/modification/packaging/transport of lipids;

Accept storage/synthesis of carbohydrates
Accept storage of lipds

3

[5]

Q6.

- (a) 1. RNA/rRNA;
 - 2. Protein;

Reject tRNA and mRNA Ignore amino acids

(b) 1. DNA has deoxyribose, mRNA has ribose;

- 2. DNA has thymine, mRNA has uracil;
- 3. DNA long, mRNA short;
- 4. DNA is double stranded, mRNA is single stranded Accept 'double helix' for 'double stranded' and 'single helix' for 'single stranded'
- 5. DNA has hydrogen bonds, mRNA has no hydrogen bonds

OR

DNA has (complementary) base pairing, mRNA does not;

4 max

2

Must be comparisons Ignore splicing/introns

[6]

Q7.

(a) A sequence of <u>DNA</u> (nucleotides) <u>bases</u> that codes for a polypeptide;

Ignore codes for a protein.

Accept 'codes for a functional RNA' or 'codes for rRNA/tRNAs' or 'codes for a sequence of amino acids/primary structure'

- (b) 1. Pre-mRNA (only) produced in eukaryote (cell);
 - 2. Splicing only occurs in eukaryote (cell);
 - 3. Introns removed in eukaryote (cell)

OR

Introns not present in prokaryote (cell);

2 max

1

(c) 1. PNA is complementary to DNA

OR

PNA forms base pairs with DNA;

2. Preventing/reducing RNA polymerase activity/binding

OR

Prevents RNA nucleotides binding

OR

Reducing/stopping transcription;

2

- (d) 1. Releases/provides energy;
 Reject 'produce energy'
 - 2. (So) peptide bonds form between amino acids

OR

(So) amino acid joins to tRNA;

2